3 research outputs found

    An observer-based type-3 fuzzy control for non-holonomic wheeled robots

    Get PDF
    Non-holonomic wheeled robots (NWR) comprise a type of robotic system; they use wheels for movement and offer several advantages over other types. They are efficient, highly, and maneuverable, making them ideal for factory automation, logistics, transportation, and healthcare. The control of this type of robot is complicated, due to the complexity of modeling, asymmetrical non-holonomic constraints, and unknown perturbations in various applications. Therefore, in this study, a novel type-3 (T3) fuzzy logic system (FLS)-based controller is developed for NWRs. T3-FLSs are employed for modeling, and the modeling errors are considered in stability analysis based on the symmetric Lyapunov function. An observer is designed to detect the error, and its effect is eliminated by a developed terminal sliding mode controller (SMC). The designed technique is used to control a case-study NWR, and the results demonstrate the good accuracy of the developed scheme under non-holonomic constraints, unknown dynamics, and nonlinear disturbances

    Rapid Prediction of Retired Ni-MH Batteries Capacity Based on Reliable Multi-Parameter Driven Analysis

    No full text
    In order to solve the problems of long-time consumption and high energy consumption in existing capacity detection methods of retired Ni-MH batteries, a fast and reliable capacity prediction method for retired Ni-MH batteries by multi-parameter driven analysis was proposed in this paper. This method mainly obtains several parameters through short-time measurement and pulse rapid nondestructive testing. Then, Pearson correlation coefficient and KS-test were used to analyze the correlation between the two parameters and verify the same distribution. Finally, SVR was used to predict the battery discharge capacity. The results show that the volume expansion thickness difference Δd, AC internal resistance R, terminal voltage U of the battery, charge and discharge polarization internal resistance Rf1 and Rf2 and pulse charging power P2 of the battery are strongly negatively correlated with the discharge capacity, and these characteristic parameters can effectively and reliably reflect the internal structural characteristics of the battery. Additionally, the mean relative error of the established capacity model is 5.87%, and the lowest error is 1.32%. The prediction effect is good, which provides a certain reference value for the subsequent consistent sorting method

    Influence of Circular through Hole in Pt–Rh Bushing on Temperature Propagation at High Temperature

    No full text
    In the fiberglass industry, Pt–Rh bushings made of platinum and rhodium have very good characteristics, such as high temperature resistance, corrosion resistance, oxidation resistance, and creep resistance. In this paper, a semi-infinite lath structure model is constructed, and the expression of the surface temperature distribution of a Pt–Rh alloy plate with a circular through hole is obtained based on the non-Fourier heat conduction equation, complex function method and conformal mapping method. At the same time, the influence of the position of the circular through hole in the Pt–Rh bushing and the parameters of the incident light source (Non-diffusion incident wave number and relative thermal diffusion length) on the surface temperature distribution of the Pt–Rh bushing is studied by using this formula. It is found that: 1. heat concentration and fracture are occur easily at the through hole; 2. when the through hole is in the asymmetric center, the greater the asymmetry, the smaller the maximum temperature amplitude; 3. when the buried depth of the through hole increases, the maximum temperature amplitude decreases; 4. when the incident wave number and the relative thermal diffusion length of the incident light source are larger, the maximum temperature amplitude is smaller. The numerical results are almost consistent with those of ANSYS thermal simulation. The expression of the surface temperature distribution of the semi-infinite lath structure proposed in this paper can effectively reduce the loss of precious metal materials and the time of thermal simulation in the experimental process, as well as provide important significance for structural design, quality inspection, process optimization, and service life improvement of Pt–Rh bushings
    corecore